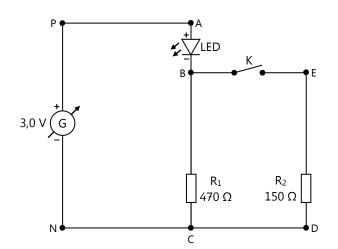
Mesure de tensions et d'intensités de courants électriques et étude d'un résistor

Utilisation d'un multimètre


- 1. Mettre le multimètre sous tension et sélectionner le type de mesure à effectuer (tension, intensité...).
- **2.** Pour les mesures réalisées sur des signaux continus et pour mesurer des valeurs moyennes, choisir DC ou $\stackrel{---}{=}$. Pour mesurer des valeurs efficaces choisir AC ou \sim .
- 3. Se placer sur le plus gros calibre possible.
- **4.** Brancher les câbles de connexion électriques sur les bonnes bornes du multimètre et dans le circuit électrique.
- 5. Choisir le plus petit calibre acceptable (conserver un calibre supérieur à la valeur mesurée!).
- 6. Débrancher le multimètre du circuit électrique avant de l'éteindre.

I. Mesures électriques avec une lampe double régime

A. Mesures d'intensités

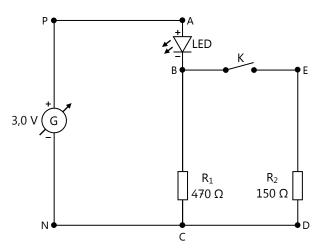
Certaines lampes frontales possèdent plusieurs modes d'éclairage : un mode "économique" et un mode "forte puissance". Le fonctionnement d'une telle lampe peut être simulée avec le montage électrique ci-contre.

- 1. En utilisant uniquement un voltmètre et le générateur électrique, allumer le générateur et le régler à 3,0 V. Puis éteindre le générateur et <u>ne plus toucher aux réglages</u> du générateur.
- 2. Tout en maintenant le générateur éteint, réaliser le montage ci-contre puis faire vérifier par l'enseignant. Conseils :
- Disposer sur la table les composants électriques comme sur le schéma (même position et même orientation);
- Commencer par réaliser la boucle contenant le générateur, la LED et le résistor 2. Puis ajouter le résistor 1.

- 3. Vérifier le bon fonctionnement du "double régime" de la lampe.
- **4.** Sur le schéma de montage ci-dessus, représenter les intensités des courants électriques (de façon à ce qu'elles soient positives) :
- I_G dans la branche du générateur ;
- I_1 dans la branche de la résistance R_1 de 470 Ω ;
- I_2 dans la branche de la résistance R_2 de 150 Ω .

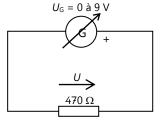
Représenter aussi les 3 appareils de mesure permettant de les mesurer (en précisant la borne COM).

5. Mesurer I_1 (avec interrupteur fermé puis ouvert) et I_2 (avec interrupteur fermé puis ouvert).


	int. fermé	int. ouvert
I_1		
I_2		
I_{G}		

- **6.** En déduire la valeur de I_G dans chacun des cas puis la mesurer pour vérifier.
- 7. Conclure sur le fonctionnement du "double régime" de la lampe.

B. Mesures de tensions


8. Sur le schéma de montage ci-contre, représenter les tensions électriques (de façon à ce qu'elles soient positives) :

- U_G aux bornes du générateur ;
- UPA aux bornes du fil du haut;
- *U*_{LED} aux bornes de la LED;
- U_1 aux bornes de la résistance R_1 de 470 Ω ;
- U_2 aux bornes de la résistance R_2 de 150 Ω . Représenter aussi l'appareil de mesure permettant de mesurer U_1 (en précisant la borne COM).
- **9.** Avec interrupteur fermé, mesurer U_G et U_1 .
- **10.** Prévoir la valeur de U_{PA} puis la mesurer pour vérifier.
- **11.** En déduire la valeur de U_{LED} puis la mesurer pour vérifier.
- **12.** En déduire aussi la valeur de U_2 puis la mesurer pour vérifier.

II. Étude d'un résistor

- 13. Sur le schéma du circuit :
- Flécher le sens de circulation du courant électrique I (de façon à ce que sa valeur soit positive) ;
- Ajouter un voltmètre permettant la mesure de la tension électrique U aux bornes du résistor ;
- Ajouter un ampèremètre permettant la mesure de l'intensité $\it I$ du courant traversant le résistor.

14. Après réalisation du montage, compléter le tableau suivant en vue de déterminer la caractéristique couranttension du résistor (c'est-à-dire l'expression mathématique de la tension électrique en fonction de l'intensité du courant électrique) :

<i>U</i> _G valeurs approchées	9 V	8 V	7 V	6 V	5 V	4 V	3 V	2 V	1 V	0 V
<i>U</i> en V										
I en A										

- 15. En utilisant le tableur-grapheur Regressi, déterminer la caractéristique courant-tension du résistor.
- **15 bis.** Le résultat obtenu est-il en accord avec l'indication d'un ohmmètre?
- **16.** Si la tension électrique aux bornes de ce résistor vaut 3,3 V, combien vaut l'intensité du courant électrique qui le traverse ? Déterminer la réponse de deux façons différentes.
- **17.** En utilisant le langage de programmation Python, afficher la représentation graphique de la caractéristique courant-tension du résistor.
- **18.** Si la tension électrique aux bornes de ce résistor vaut 3,3 V, combien vaut l'intensité du courant électrique qui le traverse ? Déterminer la réponse graphiquement avec Python.

Mesure de tensions et d'intensités de courants électriques et étude d'un résistor Liste du matériel

Pour chaque poste : (9 postes)

- □ ordinateur avec Regressi et EduPython
- □ notice simplifiée de Regressi je m'en charge
- □ notice simplifiée de Python pour les graphiques je m'en charge
- $\hfill \Box$ générateur de tension continue réglable de 0 à 12 V
- □ interrupteur
- □ 2 résistors :
 - $470~\Omega$ (les supports à composants modulables n'offrent pas de bons contacts électriques)
 - 150 Ω (les supports à composants modulables n'offrent pas de bons contacts électriques)
- □ LED rouge
- □ 2 multimètres (faisant voltmètre, ampèremètre et ohmmètre)
- □ 10 câbles de connexions électriques (adaptés à la LED et aux résistors)