
Purification du sulfate de cuivre par recristallisation Éléments de correction

1. On mesure par exemple $m_{\text{bécher}} = 51,12$ g est la masse du petit bécher vide et sec On mesure par exemple $m_{\text{tube}} = 13,23$ g est la masse du tube à essais vide et sec.

2.

Pour simplifier l'écriture, le sulfate de cuivre pentahydraté est appelé la substance.

Pour dissoudre un maximum de substance dans l'eau, on chauffe à 100 °C à 100 °C (en rouge) on peut dissoudre 114 g de substance dans 100 g d'eau

donc on peut dissoudre 20,0 g de substance dans $100 \times 20,0 / 114 = 17,5$ g d'eau.

On utilise donc 17,5 g d'eau, c'est-à-dire 17,5 mL d'eau.

Puis on chauffe le mélange jusqu'à ébullition (environ 100 °C), en agitant et en utilisant un réfrigérant.

Puis on filtre à chaud et on ne garde que le filtrat pour éliminer les impuretés insolubles dans l'eau.

Puis on refroidit le mélange à 0 °C en utilisant un bain de glace afin qu'une grande partie de la substance cristallise.

Puis on filtre à froid et on ne garde que le solide pour éliminer les impuretés solubles dans l'eau.

Puis on sèche la substance.

3. Avant la dernière filtration, pour récupérer un maximum de substance (donc pour en dissoudre le moins possible), on refroidi à 0 °C

à 0 °C (en bleu) dans 100 g d'eau, on peut dissoudre 23 g de substance donc dans 17,5 g d'eau, on peut dissoudre $17,5 \times 23/100 = 4,0$ g de substance.

Il devrait donc y avoir 4,0 g de substance dans le filtrat final (à partir de $m_{0p} = 20,0$ g de substance) et on devrait donc récupérer $m_{max p} = m_{0p} - 4,0$ g = 20,0 g - 4,0 g = 16,0 g de substance.

donc
$$\rho_{\text{max}} = \frac{m_{\text{max P}}}{m_{0 P}} = \frac{16.0 \text{ g}}{20.0 \text{ g}} = 0.800 \text{ soit } 80.0 \%.$$

- **5.** $m_{\rm obtenu\ M}$ est la masse de sulfate de cuivre pentahydraté mouillé obtenu. On mesure par exemple $m_{\rm obtenu\ M}=11,52\ {\rm g}.$
- **6.** $m_{\text{portion M}}$ est la masse de la portion de sulfate de cuivre pentahydraté mouillé contenu dans le tube à essais. On mesure par exemple $m_{\text{portion M}} = 3,08 \text{ g}$.
- **7.** On peut sécher le sulfate de cuivre mouillé en le chauffant à la flamme. Au fur et à mesure du chauffage, l'eau s'évapore et donc la masse diminue. Lorsque la masse ne diminue plus, c'est que le séchage est terminé.
- **9.** Lors du séchage, le sulfate de cuivre devient blanc : il ne s'agit plus de sulfate de cuivre pentahydraté (CuSO₄), $5 \text{ H}_2\text{O}$) mais de sulfate de cuivre anhydre (CuSO₄).
- **10.** $m_{\text{portion A}}$ est la masse de la portion de sulfate de cuivre anhydre contenu dans le tube à essais. On mesure par exemple $m_{\text{portion A}} = 1,81 \text{ g}$.

11.
$$n_{\text{portion P}} = n_{\text{portion A}}$$
 donc $\frac{m_{\text{portion P}}}{M_{\text{p}}} = \frac{m_{\text{portion A}}}{M_{\text{A}}}$ donc $m_{\text{portion P}} = \frac{m_{\text{portion A}}}{M_{\text{A}}} \times M_{\text{p}}$

Avec les valeurs de l'exemple
$$m_{\text{portion P}} = \frac{m_{\text{portion A}}}{M_{\text{A}}} \times M_{\text{p}} = \frac{1,81 \text{ g}}{160 \frac{\text{g}}{\text{mol}}} \times 250 \frac{\text{g}}{\text{mol}} = 2,83 \text{ g}$$

12. À partir de $m_{\text{portion M}}$ de substance mouillée, on obtiendrait $m_{\text{portion P}} = 2,83$ de substance non mouillée donc à partir de $m_{\text{obtenu M}}$ de substance mouillée, on obtiendrait $m_{\text{obtenu P}} = \frac{m_{\text{obtenu M}} \times m_{\text{portion P}}}{m_{\text{portion M}}}$ de substance non mouillée

Avec les valeurs de l'exemple
$$m_{\text{obtenu P}} = \frac{m_{\text{obtenu M}} \times m_{\text{portion P}}}{m_{\text{portion M}}} = \frac{11,52 \text{ g} \times 2,83 \text{ g}}{3,08 \text{ g}} = 10,58 \text{ g}.$$

13.
$$\rho = \frac{m_{\text{obtenu P}}}{m_{0 P}}$$
.

Avec les valeurs de l'exemple
$$\rho = \frac{m_{\text{obtenu P}}}{m_{0 P}} = \frac{10,58 \text{ g}}{20,0 \text{ g}} = 0,529 \text{ soit 52,9 %}.$$

14. On obtient avec les valeurs de l'exemple un rendement de 52,9 % alors que le rendement maximal est de 80,0 %. Ceci est dû au sulfate de cuivre perdu dans les différents filtres et lors des différents transvasements.