Étude et utilisation d'un filtre

I. Diagramme de Bode d'un filtre.

1. Proposer un protocole expérimental permettant d'obtenir la représentation graphique du coefficient d'amplification en tension en fonction de la fréquence pour le montage ci-dessous.

$$u_{\rm e}$$
 $u_{\rm e}$ $u_{\rm e}$ $u_{\rm e}$

Données :

• Le coefficient d'amplification en tension est $A = \frac{U_s}{U_s}$

où U_s est l'amplitude de la tension de sortie et U_e l'amplitude de la tension d'entrée.

• En utilisant des signaux sinusoïdaux centrés sur zéro, on a aussi $A = \frac{U_{\text{s efficace}}}{U_{\text{e efficace}}}$

car, dans ce cas, l'amplitude vaut $U = U_{\text{efficace}} \times \sqrt{2}$ et donc $A = \frac{U_s}{U_e} = \frac{U_{\text{s efficace}} \times \sqrt{2}}{U_{\text{e efficace}} \times \sqrt{2}} = \frac{U_{\text{s efficace}}}{U_{\text{e efficace}}}$.

• Le gain (en dB) est $G = 20 \times \log \left(\frac{A}{A_{\text{max}}} \right)$.

2. Réaliser l'expérience et déterminer le type de filtre dont il s'agit ainsi que sa fréquence de coupure (lorsque le coefficient d'amplification est égal au maximum divisé par $\sqrt{2}$) et sa bande passante.

, , , , , , , , , , , , , , , , , , ,												
f approximative (Hz)	10	20	35	50	70	95	120	150	200	300	400	500
f précise (Hz)												
coef d'ampli A												
gain G (dB)												

3. Représenter aussi le gain en tension en fonction de la fréquence et vérifier que la fréquence de coupure à
3 dB est bien la même que celle précédemment déterminée.

II. Effet de ce filtre sur une tension.

- **4.** Régler le GBF pour qu'il délivre un signal créneau, centré sur 0 (le bouton *DC offset* doit alors être enfoncé et non pas tiré), de fréquence 100 Hz et d'amplitude médiane.
- 5. Prévoir les réglages d'Orphy qui permettront de réaliser l'acquisition d'une dizaine de motifs de ce signal.
- **6.** Réaliser cette acquisition.
- **7.** Afficher le spectre en fréquence de cette tension (choisir "fenêtre naturelle corrigée") et prévoir l'effet du filtre sur cette dernière.
- 8. Envoyer cette tension sur le filtre et réaliser l'acquisition du signal à sa sortie.
- **9.** Comparer la représentation temporelle du signal obtenu avec celle attendue puis afficher le spectre en fréquence de ce signal (choisir "fenêtre naturelle corrigée") et analyser.

Étude et utilisation d'un filtre Liste du matériel

Pour chaque poste : (9 postes)

- $\hfill \square$ ordinateur avec logiciels Regressi et Orphy
- □ Orphy
- $\hfill\Box$ GBF avec adaptateur BNC
- □ cordons Radiall de connexions électriques
- □ 2 multimètres (voltmètres) identiques
- $\ \square$ résistor 1 k Ω
- $\scriptstyle\square$ condensateur 1 μF