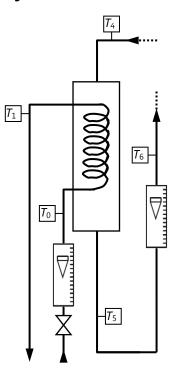
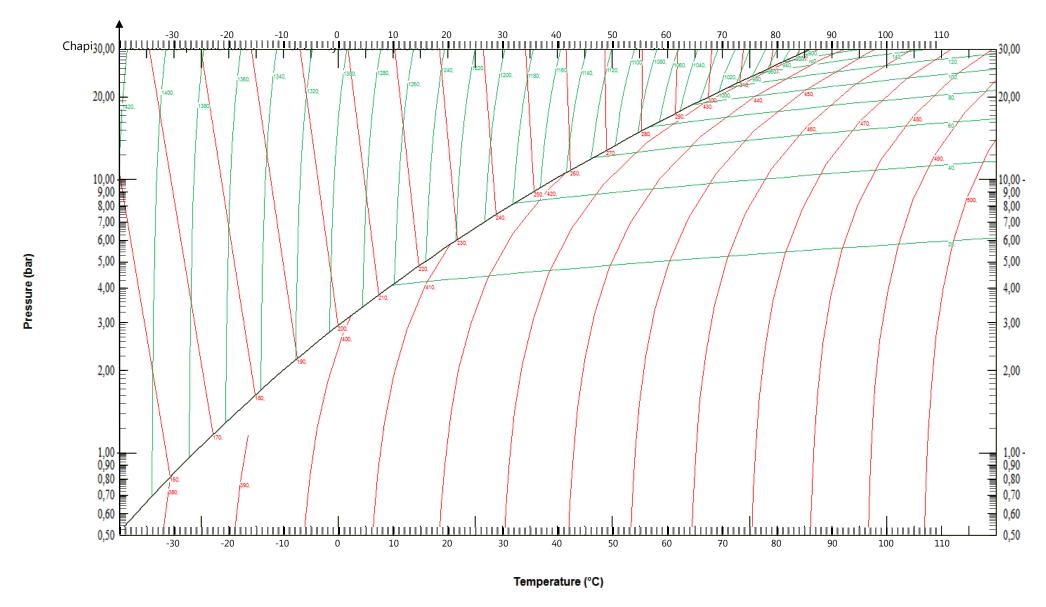
L'échangeur thermique de la pompe à chaleur du lycée

L'échangeur thermique de la pompe à chaleur de démonstration du lycée est un condenseur qui permet de chauffer de l'eau à partir d'un fluide caloporteur chaud. Le fluide caloporteur chaud est du R134a (aussi appelé 1,1,1,2,tétrafluoroéthane ou HFC-134a) dont la pression est uniforme.


- **1.** Sur le schéma ci-contre, indiquer par de nombreuses flèches rouges le sens de circulation du fluide R134a et repasser en bleu les canalisations où circule l'eau.
- **2.** À Indiquer quel matériau a permis de fabriquer le serpentin du condenseur. Pourquoi ce matériau ?
- **3.** Compléter toutes les lignes où il est écrit "à mesurer". Les autres lignes seront à compléter au fur et à mesure des demandes dans l'énoncé.
- capacité thermique de l'eau c_{eau} = 4180 J·kg⁻¹.°C⁻¹
- masse volumique de l'eau $\rho_{\rm eau}$ = 1,000 kg·L⁻¹


à mesurer – débit en volume d'eau du circuit de chauffage $q_{V \text{ eau}} = ...$

- débit en masse d'eau du circuit de chauffage (question 7) $q_{m \, \text{eau}} = ...$
- masse volumique du R134a liquide (question 9) $\rho_{R134a} = ...$
- à mesurer débit en volume de R134a liquide $q_{VR134a} = ...$
 - débit en masse de R134a (question 10) $q_{m R134a} = ...$
- à mesurer haute pression relative $P_{4 \text{ rel}} = ...$
 - haute pression absolue (question 6) $P_{4 abs} = ...$
- à mesurer température eau entrée condenseur $T_0 = ...$
- à mesurer température eau sortie condenseur $T_1 = ...$
- à mesurer température R134a entrée condenseur $T_4 = ...$
- à mesurer température R134a sortie condenseur $T_5 = ...$
- à mesurer température R134a entrée détendeur (au niveau du débitmètre) $T_6 = ...$
 - **4.** Vérifier, en utilisant avec précaution le sens du toucher, comment évolue la température du R134a suite au passage dans le condenseur. Faire de même pour l'eau.
 - **5.** Observer ce qui se passe au niveau du condenseur.
 - **6.** Calculer la haute pression absolue.
 - 7. Calculer le débit en masse de l'eau à partir de son débit en volume.
 - **8.** Calculer le flux thermique reçu par l'eau dans le condenseur.
 - **9.** À partir du diagramme pression-température du R134a, déterminer sa masse volumique lorsque sa température est T_6 (au niveau du débitmètre).
 - 10. Calculer le débit en masse du R134a à partir de son débit en volume.
 - **11.** À partir du diagramme pression-température du R134a, vérifier que ce fluide caloporteur est gazeux lorsque sa température est T_4 et qu'il est liquide lorsque sa température est T_5 (placer les deux points sur le diagramme).
 - **12.** Puis, en s'aidant de ce diagramme pression-température du R134a, déterminer le flux thermique qu'il reçoit lors de la condensation à pression constante.

<u>Donnée</u>: à pression constante, le flux thermique reçu par le fluide est $\Phi = q_m \cdot \Delta H$ avec q_m le débit en masse du fluide et ΔH la variation d'enthalpie massique du fluide.

13. Comparer les deux flux thermiques trouvés.

sur l'axe des abscisses (tout en bas et tout en haut) : température θ (en °C) sur l'axe des ordonnées (tout à gauche et tout à droite) : pression P (en bar) en noir : courbe d'équilibre liquide-vapeur (à gauche le liquide, à droite le gaz)

en rouge : enthalpie massique H (de 10 en 10 kJ·kg·1) en vert : masse volumique ρ (de 20 en 20 kg·m·3)

Diagramme pression-température du fluide R134a