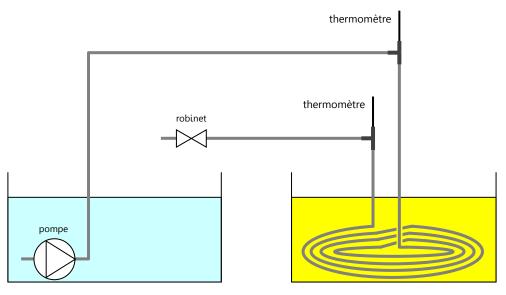

Utilisation d'un fluide chaud pour chauffer un liquide Éléments de correction


1.

bain thermostaté à 50 °C

cristallisoir plein de liquide jaune froid

3. La puissance reçue par le fluide caloporteur chaud est $\Phi_{\text{reçue}}$ ou $\mathcal{P}_{\text{th reçue}} = q_{m \, \text{fluide}} \cdot c_{\text{fluide}} \cdot \Delta \theta_{\text{fluide}}$ Pour obtenir c_{fluide} (la capacité thermique massique de l'eau liquide) on regarde dans les données.
Pour obtenir $q_{m \, \text{fluide}}$ on utilise une éprouvette graduée, un chronomètre et la masse volumique de l'eau liquide.
Pour obtenir $\Delta \theta_{\text{fluide}}$ on ajoute deux thermomètres.

bain thermostaté à 50 °C

cristallisoir plein de liquide jaune froid

- 4. Exemple de valeurs obtenues avec un très fin filet de fluide caloporteur chaud :
- 150 mL de fluide caloporteur chaud (mesurés à l'éprouvette graduée) s'écoulent en 54 s (mesurés au chronomètre) ;
- le fluide caloporteur chaud entre à 45,8 °C et sort à 32,0 °C donc $\Delta\theta_{\rm fluide} = 32,0-45,8 = -13,0$ °C = -13,0 °C

La puissance reçue par le fluide caloporteur chaud est $\mathcal{P}_{\text{th reçue}} = q_{m \, \text{fluide}} \cdot c_{\text{fluide}} \cdot \Delta \theta_{\text{fluide}}$

$$\text{avec} \quad q_{m \, \text{fluide}} = \frac{m_{\text{fluide}}}{\Delta t} = \frac{\rho_{\text{fluide}} \times V_{\text{fluide}}}{\Delta t}$$

$$donc \qquad \mathcal{P}_{\text{th reque}} = \frac{\rho_{\text{fluide}} \times V_{\text{fluide}}}{\Delta t} \times c_{\text{fluide}} \times \Delta\theta_{\text{fluide}} = \frac{1000 \ \frac{\text{kg}}{\text{m}^3} \times 150 \times 10^{-6} \ \text{m}^3}{54 \ \text{s}} \times 4,18 \times 10^3 \ \frac{\text{J}}{\text{kg}^{\circ}\text{C}} \times (-13,0 \ ^{\circ}\text{C}) = -151 \ \text{W}$$

La puissance reçue par le fluide caloporteur chaud vaut -151 W, ce qui veut dire qu'en réalité il cède de l'énergie avec une puissance $\mathcal{P}_{th \, c\acute{e}d\acute{e}e} = 151$ W.

Donc, en négligeant les pertes, le liquide jaune est chauffé à une puissance de 151 W.

5. L'un des plus gros défauts de l'échangeur thermique réalisé est qu'il est fabriqué en plastique, matériau qui n'est pas un bon conducteur thermique, contrairement aux métaux.