Un capteur de pression pour mesurer la hauteur de liquide Éléments de correction

I. La pression est-elle une force?

1. On remarque qu'une même force exercée sur une surface plus petite exerce une pression plus grande.

$$P = \frac{F_p}{S}$$

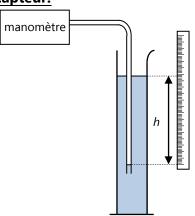
où P est la pression en pascal (symbole Pa),

 F_p est la force pressante en newton (symbole N),

S est la surface sur laquelle s'exerce la force pressante en m².

II. Relation entre pression et hauteur de liquide au-dessus du capteur.

2. Pour différente profondeur du tuyau (rempli d'air) menant au manomètre, on mesure la hauteur d'eau h et la pression P.

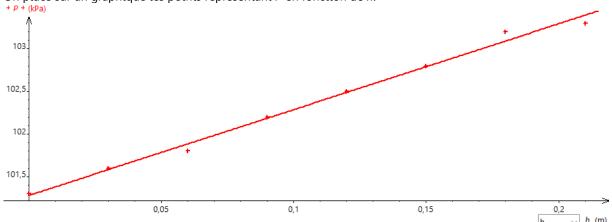


Si on a par exemple les mesures :

h (cm)	0	3	6	9	12	15	18	21
P (hPa)	1013	1016	1018	1022	1025	1028	1032	1033
on a donc :								

h (m)	0	0,03	0,06	0,09	0,12	0,15	0,18	0,21
<i>P</i> (Pa)	1013×10 ²	1016×10 ²	1018×10 ²	1022×10 ²	1025×10^2	1028×10 ²	1032×10 ²	1033×10 ²

On place sur un graphique les points représentant *P* en fonction de *h*.



On remarque qu'ils sont alignés (aux incertitudes expérimentales près). On en déduit que la relation est du type $P = a \times h + b$.

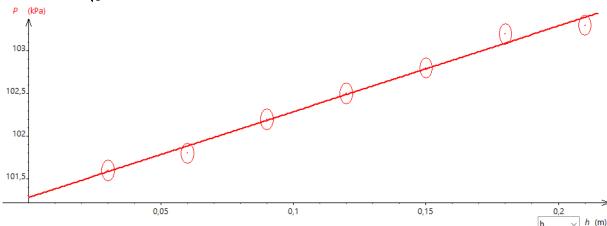
Avec P en Pa et h en m on trouve à peu près $P = 9.81 \times 10^3 \times h + 1.013 \times 10^5$ ce qui correspond à la formule de référence $P = (\rho_{\text{eau}} \times g) \times h + P_{\text{atm}}$

3. La précision sur la mesure de h est de \pm 2 mm = \pm 2×10⁻³ m

donc
$$u_h = \frac{2 \times 10^{-3} \text{ m}}{\sqrt{3}} = 1,2 \times 10^{-3} \text{ m}$$
 et donc $2 \times u_h = 2 \times 1,2 \times 10^{-3} = 2,4 \times 10^{-3} \text{ m}$.

La précision sur la mesure de P est de \pm 1 hPa = \pm 1×10² Pa

donc
$$u_{p} = \frac{1 \times 10^{2} \text{ Pa}}{\sqrt{3}} = 5,8 \times 10^{1} \text{ Pa}$$
 et donc $2 \times u_{p} = 2 \times 5,8 \times 10^{1} \text{ Pa} = 1,2 \times 10^{2} \text{ Pa}$.



La droite passe bien par toutes les ellipses donc, en tenant compte des incertitudes, le modèle est validé.

4. Sans la modélisation graphique :

```
import matplotlib.pyplot as plt
                                    # importe la bibliotheque graphique
list_x = [0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21]
                                                                 # differentes valeurs des abscisses
list_y = [1013e2, 1016e2, 1018e2, 1022e2, 1025e2, 1028e2, 1032e2, 1034e2] # differentes ...
plt.clf()  # efface les graphiques
plt.plot(list_x, list_y, "b+", label="Pression P")  # trace la
plt.legend()  # afficher la legende (le label) de chaque courbe
                                                            # trace la courbe
plt.xlabel("h (m)")  # affiche le nom de l'axe des abscisses
plt.ylabel("P (Pa)")
                         # affiche le nom de l'axe des ordonnees
plt.title("Pression en fonction de la hauteur d'eau")
                                                               # affiche le titre du graphique
plt.grid(True) # affiche ou non le quadrillage
               # affiche les graphiques
plt.show()
```

```
Avec la modélisation graphique :
import matplotlib.pyplot as plt # importe la bibliotheque graphique
from scipy.optimize import curve fit
                                             # importe la bibliotheque de modelisation
def modele(x, a, b): # nom de la fonction utilisee comme modele (et liste des parametres)
                        # definition mathematique de la fonction utilisee comme modele
     return a*x + b
list_x = [0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21]
                                                                  # differentes valeurs des abscisses
list_y = [1013e2, 1016e2, 1018e2, 1022e2, 1025e2, 1028e2, 1032e2, 1034e2]
parametres, covariance = curve_fit(modele, list_x, list_y)
                                                                      # calcul des parametres ...
list_y_modele = [] # creation d'une liste ou se trouvera les ordonnees modelisees ...
                    # pour chaque abscisse x
for x in list x:
    list_y_modele.append( modele(x, parametres[0], parametres[1]) ) # calcul de l'ordonnee ...
plt.clf()  # efface les graphiques
plt.plot(list_x, list_y_modele, "r-", label="modelisation")  # trace la courbe modelisee
plt.title(f"P = a * h + b avec a = {parametres[0]} et b = {parametres[1]}")  # affiche ...
plt.plot(list_x, list_y, "b+", label="valeurs exp") # trace les
plt.legend() # afficher la legende (le label) de chaque courbe
                                                            # trace les points experimentaux
                       # affiche le nom de l'axe des abscisses
plt.xlabel("h (m)")
plt.ylabel("P (Pa)")
                          # affiche le nom de l'axe des ordonnees
plt.grid(True) # affiche ou non le quadrillage
              # affiche les graphiques
plt.show()
```

Avec P en Pa et h en m on trouve alors $P = 10317 \times h + 101267$ soit encore $P = 10,317 \times 10^3 \times h + 1,01267 \times 10^5$ soit à peu près $P = 9,81 \times 10^3 \times h + 1,013 \times 10^5$ ce qui correspond à la formule de référence $P = \rho_{\text{eau}} \cdot g \cdot h + P_{\text{atm}}$

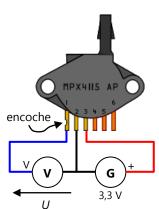
5. Il suffit de mesurer la pression et d'en déduire (par le calcul) h. Par exemple, si on mesure P=1037 hPa $=1037\times10^2$ Pa , comme $P=9,81\times10^3\times h+1,013\times10^5$ $9,81\times10^3\times h=P-1,013\times10^5$ $h=\frac{P-1,013\times10^5}{9,81\times10^3}=\frac{1037\times10^2-1,013\times10^5}{9,81\times10^3}=0,24 \text{ m}=24 \text{ cm}$

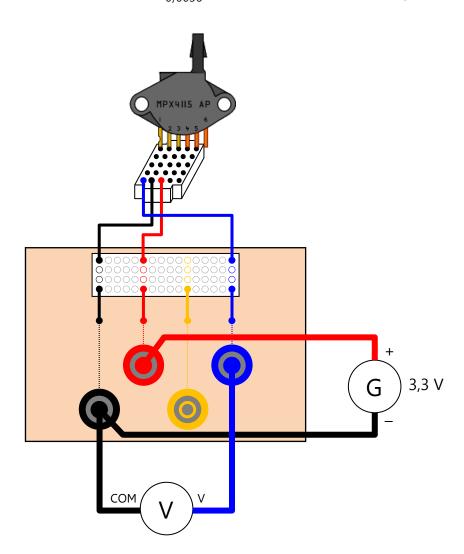
III. Utilisation du capteur de pression MPX4115AP avec un microcontrôleur micro:bit.

- **6.** Le capteur de pression (contrairement au manomètre) peut être intégré dans un système et permet par exemple d'automatiser la mesure et son traitement afin de faire fonctionner le château d'eau.
- **7.** Pour déterminer la relation entre la hauteur d'eau au-dessus du capteur et la tension :
- On réalise le montage électrique ci-contre et on plonge le tuyau du capteur dans l'eau de l'éprouvette remplie d'eau ;
- Pour différentes profondeurs du tuyau (rempli d'air) menant au capteur, on mesure la hauteur d'eau h et la tension électrique U;
- On place sur un graphique les points représentant U en fonction de h.
- On remarque que ces points sont alignés (aux incertitudes expérimentales près) et on en déduit que la relation est du type $U = a \times h + b$.

Avec \boldsymbol{U} en \boldsymbol{V} et \boldsymbol{h} en cm on trouve par exemple $U=0,0036\times h+2,793$

donc
$$0,0036 \times h = U - 2,793$$
 et donc $h = \frac{U - 2,793}{0,0036}$





8. Il suffit de mesurer la tension électrique et d'en déduire (par le calcul) h.

Par exemple, si on mesure U = 2,879 V,

comme $U = 0,0036 \times h + 2,793$ $0,0036 \times h = U - 2,793$

$$h = \frac{U - 2,793}{0,0036} = \frac{2,879 - 2,793}{0,0036} = 23,889 \text{ cm} \approx 24 \text{ cm}$$

9. La sensibilité du capteur est $s = \frac{\Delta \text{ grandeur de sortie}}{\Delta \text{ grandeur d'entré}} = \frac{\Delta U}{\Delta h}$

il s'agit de la pente de la caractéristique de transfert du capteur (la courbe représentant U en fonction de h) donc, ici, s = 0.0036 V/cm = 3.6 mV/cm = 0.36 mV/mm

10. Précision : $\pm (0.1\% \text{ lect} + 2 \text{ dgt})$ c'est à dire $\pm (0,1\% \text{ de la valeur lue} + 2 \times \text{résolution})$

donc précision =
$$\pm \left(\frac{0,1}{100} \times 2,879 + 2 \times 0,001\right) = \pm 0,00488 \text{ V}$$

donc l'incertitude est $u_{11} = 0.00488 / \sqrt{3} \approx 0.003 \text{ V}$ ou 0.0028 V

11. La sensibilité du capteur est $s = \frac{\Delta U}{\Delta h}$ alors, pour les incertitudes, $|s| \approx \frac{u_U}{u_v}$

donc
$$u_h \approx \frac{u_U}{|s|} = \frac{0,003 \text{ V}}{0,0036 \frac{\text{V}}{cm}} = 0.8 \text{ cm}$$

h = 23.9 cm avec une incertitude $u_h = 0.8$ cm

12. $|P_A - P_B| = \rho_{\text{easy}} \cdot g \cdot h$ est la surpression est due à la hauteur d'eau h

$$h = \frac{|P_A - P_B|}{\rho_{\text{eau}} \cdot g} = \frac{1 \times 10^3}{1000 \times 10} = 0.1 \text{ m} = 100 \text{ mm}$$

13. La sensibilité du capteur est de 33 mV/kPa soit 33 mV pour 1 kPa or, une variation de 1 kPa correspond à un changement de profondeur de 100 mm la sensibilité est donc de 33 mV pour 100 mm et donc de 0,33 mV pour 1 mm la sensibilité du capteur est donc de 0,33 mV/mm

Ce qui est assez proche de la valeur 0,36 mV/mm obtenue expérimentalement à la question 9.

14. Le quantum est $q = \frac{\text{tension pleine échelle}}{\text{nombre de valeurs numériques possibles}} = \frac{\text{tension pleine échelle}}{2^N}$

où N est la résolution (c'est-à-dire le nombre de bits)

donc
$$q = \frac{3.3}{2^{10}} = 3.2 \times 10^{-3} \text{ V} = 3.2 \text{ mV}$$

15. La sensibilité du capteur est de 0,33 mV/mm

/ 0,33 C'est-à-dire 0,33 mV pour 1 mm

your le quantum de 3,2 mV on a donc $\frac{1 \text{ mm} \times 3,2 \text{ mV}}{0,33 \text{ mV}} = 9,7 \text{ mm}$

la résolution de l'ensemble {capteur + microcontrôleur} est donc de 9,7 mm

- 16. Cette résolution de 9,7 mm n'est pas assez petite pour répondre au cahier des charges qui impose une résolution inférieure à 2 mm.
- 17. Le capteur doit être plus sensible (plus de mV par kPa).

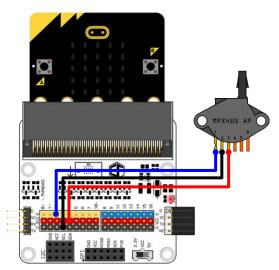
IV. Utilisation du capteur de pression MPX5010DP avec un microcontrôleur micro:bit.

- 18. On peut réaliser le montage ci-contre.
- **19.** En branchant la borne n°1 du capteur de pression sur la broche 2 du micro:bit (voir ci-contre) :

 from micro:hit import *

```
from microbit import *
while True:
    valnum = pin2.read_analog()
    display.scroll(valnum)
```

ou



On observe que plus la profondeur d'eau augmente, plus la valeur numérique augmente. Le changement de la valeur numérique se fait environ tous les 1 mm.

- 20. Pour déterminer la relation entre la hauteur d'eau au-dessus du capteur et la valeur numérique :
- On utilise le montage électrique précédent et on rempli plus ou moins le réservoir d'eau au fond duquel se trouve le tuyau relié au capteur ;
- Pour différentes hauteurs d'eau, on mesure la hauteur d'eau *h* et on relève la valeur numérique donnée par le microcontrôleur ;
- On place sur un graphique les points représentant valeur numérique en fonction de h.
- On remarque que ces points sont alignés (aux incertitudes expérimentales près) et on en déduit que la relation est du type $valeur numérique = a \times h + b$.

Avec h en mm on trouve par exemple valeur numérique = 0,834×h+15,8

```
donc h = \frac{valeur\ num\'erique - 15,8}{0.834} donc h = 1,20 \times valeur\ num\'erique - 18,9
```

21. En utilisant les valeurs précédentes :

```
from microbit import *
while True:
    valnum = pin2.read_analog()
    h = round(1.20*valnum - 18.9)  # round pour arrondir à l'entier (donc au mm)
    display.scroll(h)
```

ou

```
from microbit import *
while True:
    valnum = pin2.read_analog()
    h = round(1.20*valnum - 18.9)  # round pour arrondir à l'entier (donc au mm)
    print(h)  # en utilisant le REPL
    sleep(250)  # petite pause pour avoir le temps de lire la valeur
```

On peut vérifier que, pour différentes hauteurs d'eau, la valeur lue sur les graduations correspond bien à la valeur affichée par le microcontrôleur.

22. On lit directement la hauteur d'eau sur le microcontrôleur ou sur l'écran de l'ordinateur.

```
23. La sensibilité du capteur est s = \frac{\Delta \text{ grandeur de sortie}}{\Delta \text{ grandeur d'entrée}} = \frac{\Delta valeur numérique}{\Delta h}
```

il s'agit de la pente de la caractéristique de transfert du capteur (la courbe représentant *valeur numérique* en fonction de *h*)

donc, d'après le résultat de la question 20 (valeur numérique = $0.834 \times h + 15.8$), $s = 0.834 \text{ mm}^{-1}$

24. La sensibilité du capteur est de 0,834 mm⁻¹
soit 0,834 unité de valeur numérique pour 1 mm
donc 1 unité de valeur numérique correspond à 1 mm / 0,834 = 1,20 mm
la résolution de l'ensemble {capteur + microcontrôleur} est donc de 1,20 mm

25. Cette résolution de 1,20 mm est assez petite pour répondre au cahier des charges qui impose une résolution inférieure à 2 mm.