La lunette astronomique Éléments de correction

Présentation.

La lunette astronomique est destinée à observer un objet situé "à l'infini". L'un des principaux rôles de la lunette est d'augmenter le diamètre apparent de l'objet. Afin de ne pas fatiquer l'œil, l'image doit être située à l'infini.

Principe de fonctionnement et détermination de la position des lentilles.

Lorsque c'est demandé, compléter le 1er schéma avec, en rouge, 2 (ou 3) rayons lumineux provenant de B.

Considérons deux étoiles A (en bleu) et B (en rouge), observées à l'œil nu sous un petit angle α_0 (diamètre apparent), la lumière provenant de chacune de ses étoiles est sous forme de rayons parallèles entre eux car les étoiles sont situées "à l'infini".

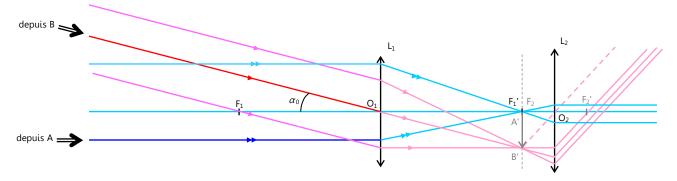
La lentille L_1 (l'objectif) permet donc d'obtenir une image A'B' située dans son plan focal image (compléter le schéma).

L'image A'B' (donnée par la lentille L_1) sert d'objet pour la lentille L_2 .

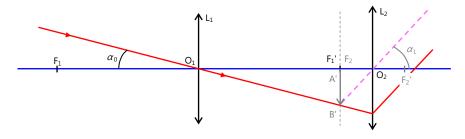
A'B' est observé à travers la lentille L_2 (l'oculaire) qui forme une image située à l'infini. La lumière qui émerge de L_2 est donc sous forme de rayons parallèles entre eux. La lentille L_2 doit donc être placée de façon à avoir A'B' situé dans son plan focal objet. Les lentilles L_1 et L_2 sont donc disposées de façon à ce que leurs foyers F_1 ' et F_2 soient confondus (compléter le schéma).

Remarque : avec une telle lunette l'image est renversée.

Compléter le 1^{er} schéma avec, en bleu, 2 (ou 3) rayons lumineux provenant de A.



Détermination de la focales des lentilles.



Donnée : si un angle θ est petit, alors $\tan \theta \approx \theta$ (en radians).

On note f_1 ' la distance focale de la lentille L_1 et f_2 ' la distance focale de la lentille L_2 . Pour exprimer α_L :

- exprimons A'B' en fonction des données : α_0 est petit donc (triangle O₁A'B') $\alpha_0 \approx \tan \alpha_0 = \text{A'B'} / f_1'$ donc A'B' = $\alpha_0 \times f_1'$.
- exprimons $\alpha_{\rm L}$ en fonction des données et de A'B' : $\alpha_{\rm L}$ est petit donc (triangle O₂A'B') $\alpha_{\rm L} \approx \tan \alpha_{\rm L} = {\rm A'B'} / f_2$ ' .
- exprimons alors α_L en fonction des données : $\alpha_L = \alpha_0 \times f_1' / f_2'$.

 α_L doit absolument être plus grand que α_0 , et même le plus grand possible ; la lentille L_1 (objectif) est donc de grande distance focale et la lentille L_2 (oculaire) de petite distance focale.